Methods, IOCBC, Einsle

Planar Lipid Bilayer Workstation

Electrophysiology

Unit and Room: Responsible: Further information:

Model: Warner Planar Lipid Bilayer

Workstation

Biochemistry, 10th floor, R.1002 Dr. Susana Andrade, 203 8719

http://portal.uni-

freiburg.de/biochemie/equipment

Short Description:

The Planar Lipid Bilayer Workstation allows for pico- or nano-scale charge current measurements across an artifical lipid membrane through reconstituted, ionconducting single channels. Currents are measured via silver electrodes, digitized and amplified. The entire setup is encased in a Faraday cage for the shielding from electromagnetic and mechanical interference and contains mechanisms for stirring and changing solutions, signal processing and data analysis.

Available Experiments/Techniques:

Painiting of lipid bilayers, reconstitution of membrane proteins; current measurements; voltage clamp experiments

Picture of the Equipment

Special Equipment:

Faraday cage, active vibration-isolation table, membrane support (cups and chambers), dualcapacity stirrer, low electric noise lamp, microscope, perfusion equipment, amplifier, signal filter, osciloscope and analogue-to-digital signal converter.

Measurements on the equipment are currently done by:	Students Students after Introduction
	Students after extensive training
	personal
Recent Publications, where this instrument	
was	
important (optional): Give citation	
Typical problems that may be solved with this	- measurement of electric currents across
instrument:	lipid membranes.
	- determination of ion transport rates
	through membrane proteins
	- measurement of transport activity
	dependent on lipid membrane composition